`
import pymysql
import openai
import json
import pandas as pd

# ============ 配置区 ============
DB_CONFIG = {
'host': 'localhost',
'user': 'root',
'password': 'yourpassword',
'port': 3306,
'charset': 'utf8mb4'
}
OPENAI_API_KEY = 'YOUR_OPENAI_API_KEY'
MODEL_NAME = 'gpt-4'
OUTPUT_FILE = 'sensitive_data_analysis.xlsx'
MAX_TABLES_PER_BATCH = 10 # 分批传递表数量,避免超载

# ====== 数据库连接 ======
def connect_db():
"""建立数据库连接"""
try:
conn = pymysql.connect(**DB_CONFIG)
print(" 数据库连接成功")
return conn
except Exception as e:
print(f" 数据库连接失败: {e}")
return None


# ====== 数据采集 ======
def collect_db_info(conn):
"""枚举所有数据库、数据表、字段、样本记录、服务器信息、访问记录等"""
print("🔍 正在采集数据库信息...")
db_structure = {}
server_info = {}
access_logs = []

with conn.cursor() as cursor:
# 获取服务器信息
cursor.execute("SELECT VERSION(), @@hostname, @@port, @@system_time_zone, @@datadir;")
version, hostname, port, timezone, datadir = cursor.fetchone()
server_info = {
'版本': version,
'主机名': hostname,
'端口': port,
'时区': timezone,
'数据目录': datadir
}

# 获取访问记录(需要权限)
try:
cursor.execute("SHOW PROCESSLIST;")
access_logs = cursor.fetchall()
except:
print("⚠️ 当前用户无法查看访问记录 (SHOW PROCESSLIST)")

# 获取数据库结构和样本数据
cursor.execute("SHOW DATABASES")
databases = [db[0] for db in cursor.fetchall()]

for db in databases:
if db in ('information_schema', 'performance_schema', 'mysql', 'sys'):
continue # 跳过系统库

cursor.execute(f"USE `{db}`")
cursor.execute("SHOW TABLES")
tables = [table[0] for table in cursor.fetchall()]

db_structure[db] = {}

for table in tables:
# 获取字段信息
cursor.execute(f"DESCRIBE `{table}`")
columns = [col[0] for col in cursor.fetchall()]

# 获取前 5 条数据样本
cursor.execute(f"SELECT * FROM `{table}` LIMIT 5")
samples = cursor.fetchall()

db_structure[db][table] = {
"columns": columns,
"samples": samples
}

return db_structure, server_info, access_logs


# ====== OpenAI 分析 ======
def call_openai_api(prompt):
"""调用 OpenAI API 进行分析"""
openai.api_key = OPENAI_API_KEY
response = openai.ChatCompletion.create(
model=MODEL_NAME,
messages=[{"role": "system", "content": "你是一个数据库安全分析助手。"},
{"role": "user", "content": prompt}],
max_tokens=2000
)
return response['choices'][0]['message']['content'].strip()


def analyze_with_openai(data):
"""利用 OpenAI 分析数据库结构和服务器信息"""
print("🧠 正在通过 OpenAI 分析...")

# 生成分析 prompt(强化中文环境敏感信息识别)
prompt = (
"以下是数据库结构、服务器信息和访问记录,请识别可能的敏感信息(如身份证号、手机号、邮箱、密码、IP 地址、端口、视频监控流地址等),"
"字段名可能为中文、拼音或缩写,请结合字段名和样本数据双重判断敏感信息,"
"输出格式:{'sensitive_fields': {...}, 'server_analysis': {...}, 'access_analysis': {...}}。\n\n"
f"数据如下:\n{json.dumps(data, ensure_ascii=False, indent=2)}"
)

# 调用大模型
response = call_openai_api(prompt)
try:
analysis_result = json.loads(response)
print(" 分析完成!")
return analysis_result
except json.JSONDecodeError:
print(" OpenAI 响应解析失败,原始响应:", response)
return {}


# ====== 导出 Excel ======
def export_to_excel(db_structure, server_info, access_logs, analysis_result):
"""导出数据和分析结果到 Excel"""
print("📤 正在导出数据到 Excel...")
writer = pd.ExcelWriter(OUTPUT_FILE, engine='openpyxl')

# 导出服务器信息
server_df = pd.DataFrame([server_info])
server_df.to_excel(writer, sheet_name='服务器信息', index=False)

# 导出访问记录
if access_logs:
access_df = pd.DataFrame(access_logs)
access_df.to_excel(writer, sheet_name='访问记录', index=False)
 
 
Back to Top